Outbreaks of Health care Associated Infections

Nina Sorknes and Katrine Borgen
EpiTrain VI, 8.12.2010
Tallinn, Estonia
Content

• HAI outbreaks
 – Characteristics
 – Detection
 – Investigation
Patients at risk

- Underlying disease
- Age
- Medical interventions
- Patient density
- Immunosuppressive treatment

- Environmental factors
- Food
- Facilities
- Others
<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
<th>Results</th>
<th>Search Type</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Infection controlS.mp. [mp-title, original title, abstract, name of substance word, subject heading word, unique identifier]</td>
<td>24025</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>2</td>
<td>cross infectionS.mp. [mp-title, original title, abstract, name of substance word, subject heading word, unique identifier]</td>
<td>40426</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>3</td>
<td>1 or 2</td>
<td>56120</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>4</td>
<td>hospitalS.mp. [mp-title, original title, abstract, name of substance word, subject heading word, unique identifier]</td>
<td>907668</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>5</td>
<td>health care institutionS.mp. [mp-title, original title, abstract, name of substance word, subject heading word, unique identifier]</td>
<td>0</td>
<td>Advanced</td>
<td>Delete</td>
</tr>
<tr>
<td>6</td>
<td>health care facilityS.mp. [mp-title, original title, abstract, name of substance word, subject heading word, unique identifier]</td>
<td>873</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>7</td>
<td>4 or 5 or 6</td>
<td>908134</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>8</td>
<td>3 and 7</td>
<td>26713</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>9</td>
<td>outbreakS.mp. [mp-title, original title, abstract, name of substance word, subject heading word, unique identifier]</td>
<td>77581</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>10</td>
<td>8 and 9</td>
<td>4288</td>
<td>Advanced</td>
<td>Display</td>
</tr>
<tr>
<td>11</td>
<td>limit 10 to (english language and humans and yr="2005 -Current")</td>
<td>1098</td>
<td>Advanced</td>
<td>Display</td>
</tr>
</tbody>
</table>
Hospital outbreak control requires joint efforts from hospital management, microbiology and infection control

- An outbreak of multidrug-resistant *Klebsiella pneumoniae* producing the extended-spectrum β-lactamase CTX-M15 affected 247 mainly elderly patients in more than 30 wards in a 1000-bedded Swedish teaching hospital between May 2005 and August 2007.
 - Faecal screening identified twice as many cases as cultures from clinical samples.
 - Transmission occurred by direct and indirect patient-to-patient contact, facilitated by patient overcrowding.
 - Interventions included formation of a steering group with economic power, increased bed numbers, better compliance with alcohol hand disinfection and hospital dress code, better hand hygiene for patients and improved cleaning.
 - The cost of the interventions was estimated to be €3 million
Local Hospital Perspective on a Nationwide Outbreak of Pseudomonas aeruginosa Infection in Norway

• During the winter of 2001–2002 in Norway, there was a national monoclonal nosocomial outbreak of *Pseudomonas aeruginosa* infection mainly affecting patients in intensive care units.

• The use of SPC at one of the affected hospitals would have detected this outbreak several weeks before the alert from the Norwegian National Public Health Institute (NIPH).

Conclusion

• The plotting of rare events, such as an outbreak of nosocomial infection, with a g chart may be used for early detection of a process out of control.
Characteristics of HAI outbreaks

- Location
- Type of infection
- Pathogens
- Source
- Mode of transmission
- Preventive/control measures

Gastmeier et al. Infect Control Hosp Epidemiology; 2005 26(4);357-361
Location

• Hospital – 83% (50% in intensive care units)
• Outpatient care – 12%
• Nursing home – 5%

• Special challenges:
 – Unskilled personnel in general and in specific in infection control
 – Work in several health care facilities

Gastmeier et al.
Type of infection

- Bloodstream – 37%
- Gastrointestinal – 29% (Probable underreporting)
- Pneumonia – 23%
- Urinary tract – 14%
- Surgical site – 12%
- Other lower respiratory – 10%
- Central nervous system – 8%
- Skin and soft tissue – 7%

Gastmeier et al.
Most frequently reported HAI pathogens

<table>
<thead>
<tr>
<th>HAI infection</th>
<th>HAI outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Enterococci</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>E. coli</td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Serratia marcescens</td>
</tr>
<tr>
<td>Streptococci</td>
<td>Hepatitis B, C virus</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>Legionella pneumophila</td>
</tr>
</tbody>
</table>

*Probable underreporting: *Salmonella* spp., *Campylobacter* spp., norovirus, rotavirus, respiratory viral infections

Gastmeier et al.
Source of HCA outbreaks

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>26%</td>
</tr>
<tr>
<td>Medical equipment / device</td>
<td>12%</td>
</tr>
<tr>
<td>Environment</td>
<td>12%</td>
</tr>
<tr>
<td>Medical personnel</td>
<td>11%</td>
</tr>
<tr>
<td>Contaminated drug</td>
<td>4%</td>
</tr>
<tr>
<td>Contaminated food</td>
<td>3%</td>
</tr>
<tr>
<td>Care equipment</td>
<td>3%</td>
</tr>
<tr>
<td>Unclear source</td>
<td>37%</td>
</tr>
</tbody>
</table>

Gastmeier et al.
Mode of transmission

- Contact – 45%
- Invasive technique – 16%
- Inhalation – 15% (droplet, airborne)
- Ingestion – 4%
- Unclear mode of transmission – 28%

Gastmeier et al.
Detection of outbreaks

• Surveillance
 – Specific infection types
 • Point prevalence
 • Incidence
 – Alert microorganisms
 • Rare microorganisms
 • Increased frequency

• Statistical Process Control (SPC)
 – Application of statistical methods to monitoring and control of a process to ensure that it operates at its full potential to produce conforming product.
SPC - Example

- number of days between observations
- average number of days between observations

observation number

number of days between observations: 30

EpiNorth
Reported outbreaks in health care facilities in Norway 2005 – 2009

<table>
<thead>
<tr>
<th>Year</th>
<th>Outbreaks</th>
<th>Number of cases</th>
<th>Microorganism</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>47</td>
<td>622</td>
<td>Norovirus</td>
<td>82%</td>
</tr>
<tr>
<td>2006</td>
<td>74</td>
<td>1784</td>
<td>Norovirus</td>
<td>95%</td>
</tr>
<tr>
<td>2007</td>
<td>88</td>
<td>2253</td>
<td>Norovirus</td>
<td>93%</td>
</tr>
<tr>
<td>2008</td>
<td>105</td>
<td>1817</td>
<td>Norovirus</td>
<td>82%</td>
</tr>
<tr>
<td>2009</td>
<td>99</td>
<td>1660</td>
<td>Norovirus</td>
<td>82%</td>
</tr>
</tbody>
</table>

http://www.fhi.no/eway/default.aspx?pid=233&trg=MainArea_5661&MainArea_5661=5631:0:15,4689:1:0:0:::0:0
Problems with detecting outbreaks

- No detection
 - 2-3 patients with pneumonia in intensive care unit
- Detection → No investigation
 - Nursing homes
- Detection → Investigation → No reporting
 - If sanctions against reporting doctors, nurses
- False detection: pseudo-epidemics (artefacts)
 - E.g. consequent laboratory contamination
 - May lead to unnecessary antibiotic treatment
The outbreak investigation
Why outbreak investigation?

• Objectives
 – Describe the outbreak
 – Identify the source
 – Prevent further cases
 – Make recommendations for future prevention
 – Learning…
Steps of an outbreak investigation

- Have an outbreak control plan
- Confirm outbreak and diagnosis
- Form Outbreak Control Team – multidisciplinary
- Define a case
- Identify cases and obtain information
- Descriptive data collection and analysis
- Develop hypothesis
- Analytical studies to test hypothesis
- Other studies: microbiological and environmental
- Communication: during and after
Three parallel activities

- Epidemiological investigations
 - Analytical
 - Descriptive

- Microbiological investigations
 - Diagnostics
 - Characterisation

- Environmental investigations
 - Inspection
 - Sampling

Control Measures
The case definition

- Time, place, person
- Clinical symptoms
- Microbiological results

"A person in Sweden who developed pneumonia within 14 days after returning from travel abroad and tested positive by urinary antigen test for *Legionella pneumophila* sg.1"

Graded case definition: confirmed, probable, possible
Specificity versus sensitivity
How do you find more cases?

• Contact health care staff in the hospital, in other wards, in other hospitals
 – Medical records
• Contact laboratories
 – Lab reports
• Look into surveillance data if available
• Ask patients if they know other who are ill
Descriptive epidemiology

What → What happens? Diagnosis, pathogen

Who → Who is involved? Age, gender

Where → Where does the outbreak occur?

When → When did the outbreak start?
Initial study

• Trawling questionnaires
 – Early cases
 – Generate hypotheses

• All relevant exposures
 – Standardised questionnaire
 – Look also for unusual, exotic exposures

➢ Don’t withdraw possible hypotheses now!
Describe cases

- **Place**
 - Mapping

- **Person**
 - Age, gender

- **Time**
 - Epicurve

Table: Age Distribution

<table>
<thead>
<tr>
<th>Age</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5-19</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>20-49</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>50-69</td>
<td>53</td>
<td>29</td>
</tr>
<tr>
<td>70-79</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>80-94</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>91</td>
</tr>
</tbody>
</table>

Age Percentages:
- 0-4: 60% Men, 40% Women
- 5-19: 67% Men, 33% Women
- 20-49: 49% Men, 51% Women
- 50-69: 65% Men, 35% Women
- 70-79: 67% Men, 33% Women
- 80-94: 55% Men, 45% Women
- Total: 61% Men, 39% Women
The Epicurve

Point source outbreak

Number of cases

Days in May 2010
The Epicurve

Continuous source outbreak

Number of cases

December 2009
Outbreak in a hospital

Date and time of onset

- 27 August
- 28 August
- 29 August
- 30 August

Cases:
- 1 case patient
- 1 case staff member
Generate hypotheses

Descriptive epidemiology → Hypothesis 1
Trawling questionnaires → Hypothesis 2
General knowledge →...

Other information about the outbreak:
- Environmental inv.
- Microbiological inv.
Test your hypothesis – 2 strategies

Analytical epidemiology
• Case control or Cohort
• Short questionnaire
• Based on hypothesis
• Cases and controls
• Comparison
• Statistical analysis
• Risk factors identified?

Microbiological testing
• Sample patients and suspected sources
• Analyse for presence of pathogens
• Genomic characterisation – comparison

Complementary, but not always possible…
Environmental investigation

• Inspection and sampling of relevant areas
 – Evaluate hygienic standard and risk
 – Is infection control in place?

• Do you suspect a specific product?
 – Can you trace it back?
 – When and where was it produced?
 – Batch number?

• Is transmission likely to occur from the environment?
Control measures

• Short term: stop the outbreak
 – Information and advice to patients, public
 – Hygienic measures and infection control
 – Staff allocation

• Long term: prevent outbreaks in the future
 – Infection control routines
 – Training, information, regulations

• The balance: To early or too late….?
Control measures in HAI outbreaks

• Standard precautions
• Isolation containment
• Hand hygiene (disinfection)
• Decontamination
• Choice of treatment (antibiotic therapy)
• Allocation of personnel/work restriction
• Screening, surveillance
• Vaccination
Communication

• Inform early those who need to know!
• Be open – don’t try to hide anything
• During the investigation
 – Web updates
 – News letters for health care workers
 – Pres releases, interviews for the public
• When the investigation is finished
 – Outbreak report for all involved stakeholders
 – Scientific publication?
Investigation of HAI outbreaks?

• What facilitates it
 – Diagnosis can usually be made rapidly
 – Direct access to medical care, laboratory
 – Patient’s records are available
 – Easy cohorting of cases

• What makes it difficult
 – Multidrug-resistant pathogens
 – Complex environment
 – Intra- and interhospital transfer of patients
 – Temporary staff, working in shifts
Multidisciplinary collaboration

- Different needs and priorities
- Multicenter approach
- National or international

- Pressure and stress
- Keep calm and think systematic
Remember…

• What is happening? Assessment
• Who is involved? Description
• What is the source? Analysis
• What needs to be done? Interventions
References and Resources

Article Summaries

- Unpasteurized Milk Articles

Foodborne Diseases Surveillance and Outbreak Investigation Toolkit

- Guide to Confirming a Diagnosis in Foodborne Disease
- Guidelines for Specimen Collection
- *Listeriosis Case Form* [PDF 385KB]
- *Cholera and Other Vibrio Illnesses Report Form* [PDF 2.72MB]
- *EFORS Form* [PDF 165KB]
- *Guidelines for Completing EFORS Form* [PDF 19KB]
- *Standard Questionnaires* [PDF 38KB]
- *Standard Questionnaires* [DOC 219KB]
- *Oregon Questionnaire* [PDF 148KB]
- *Oregon Questionnaire* [DOC 108KB]
- Public Health Training Network
- Epi Info

Government Links

- Food and Drug Administration (FDA)*
- United States Department of Agriculture*

Links to non-Federal organizations found at this site are provided solely as a service to our users. These links do not constitute an endorsement of these organizations or their programs by CDC or the Federal Government, and none should be inferred. CDC is not responsible for the content of the individual organization Web pages found at these links.

Please note: Some of these publications are available for download only as *.pdf files. These files require Adobe Acrobat Reader in order to be viewed. Please review the information on downloading and using Acrobat Reader software.

Microsoft Word

Description: Microsoft Word is a word processing program used to create and edit text documents. Text in Word documents can be easily modified or copied for use in other applications.

http://www.cdc.gov/outbreaknet/references_resources/
Epi Info™

Latest Version: Epi Info™ Version 3.5.1
Release Date: August 18, 2008

Get It Now!

What is Epi Info™?
Physicians, nurses, epidemiologists, and other public health workers needing a background in information technology often have a need for simple tools that allow the rapid creation of data collection instruments and data analysis, visualization, and reporting using epidemiologic methods.

Epi Info™, a suite of lightweight software tools, delivers core ad-hoc epidemiologic functionality without the complexity or expense of large, enterprise applications.

Epi Info™ is easily used in places with limited network connectivity or limited resources for commercial software and professional IT support. Epi Info™ is flexible, scalable, and free while enabling data collection, advanced statistical analyses, and geographic information system (GIS) mapping capability.

Since its initial release, Epi Info™ users have self-registered in over 181 countries covering all continents including Antarctica. Epi Info™ has been translated into more than 13 languages.

More than one million users are estimated.

EDUCATION
Epi Info™ is a key component in public health education at colleges, universities, and other schools of public health around the world.

COLLABORATION
Epi Info™ encourages collaboration between local, national, and international partners using Epi Info™ state and territorial.

How is Epi Info™ Used?
Epi Info™ is used worldwide for the rapid assessment of disease outbreaks; for the development of small to mid-sized disease surveillance systems; as ad hoc components integrated with other large scale or enterprise-wide public health information systems; and in the continuous education of public health professionals learning the science of epidemiology, tools, and techniques.

The MakeView module of Epi Info™ allows users to create questionnaires and data entry forms called Views in Epi Info™. With MakeView, users place questions and data entry fields on one or many pages of a View and tailor the data entry process with conditional skip patterns, data validation, and custom calculations programmed by the user using MakeView’s Check Code.

Contact Us:
Epi Info™ Help Desk
Centers for Disease Control and Prevention
1600 Clifton Rd
Mail Stop E-91
Atlanta, GA 30333
404-639-8208
Monday-Friday, 8:30 a.m. - 4:30 p.m. (Eastern Standard Time)
epiinfo@cdc.gov

http://www.cdc.gov/epiinfo/
Summary HAI outbreaks

• Characteristics
 – Population at risk

• Outbreak detection
 – Effective surveillance systems
 – Vigilant hospital personnel

• Outbreak investigation
 – Have a plan and work systematically
 – Skilled hospital infection control practitioner, epidemiologist, microbiologist, more…?

• Prevention and control measures
The ultimate goal: patient safety